2,839 research outputs found

    Reuse and Sustainability of Flood Defences

    Get PDF
    Rainfall has always been an important quantity to measure throughout history due to its importance in predicting floods and droughts. In the present day, such predictions on the severity of flooding events are critical so that appropriate flood defences may be constructed in anticipation of these events to limit any damages. With the increasing concerns of human influenced (anthropogenic) climate change will affect rainfall, there is a growing need to quantify and incorporate these events into the design of flood defences, such as earthfill embankments. As geotechnical modelling techniques are being developed to assist in the design and upgrading of earth embankments, various failure mechanisms and the behaviour of the soil within an embankment are better understood. However, one concern which arises is that there is an uncertainty on how climate change would affect the performance of these embankments. Therefore, the main purpose of this research is to identify the key failure mechanisms that may occur throughout the embankment’s life cycle, taking into account climate change effects, and to develop solutions to these issues. A site on the Thames estuary was chosen as the setting for this research. Taking into consideration a changing climate, sub-daily rainfall was produced for this site using a combination of stochastic rainfall generators and projected climate variables at the location. Following calibration and validation analyses for the foundation and embankment soils, a complete lifecycle analysis framework was established, using the previously generated rainfall as inputs to the soil-atmosphere boundary. The lifecycle framework was able to inform on both the general long-term performance of the embankment in a changing climate, and the resilience of the embankment to future extreme events. With the detailed lifecycle analysis, various strategies in reusing the embankment by raising it was also explored, to improve the embankment’s adaptability to future climate.Open Acces

    Rational Design of Superhydrophilic/Superoleophobic Surfaces for Oil-Water Separation via Thiol-Acrylate Photopolymerization

    Get PDF
    We report a simple, rapid, and scalable strategy to fabricate surfaces exhibiting in-air superoleophobic/superhydrophilic wetting via sequential spray deposition and photopolymerization of nanoparticle-laden thiol–acrylate resins comprising both hydrophilic and oleophobic chemical constituents. The combination of spray deposition with nanoparticles provides hierarchical surface morphologies with both micro- and nanoscale roughness. Mapping the wetting behavior as a function of resin composition using high- and low-surface-tension liquid probes enabled facile identification of coatings that exhibit a range of wetting behavior, including superhydrophilic/superoleophilic, superhydrophobic/superoleophobic, and in-air superhydrophilic/superoleophobic wetting. In-air superhydrophilic/superoleophobic wetting was realized by a dynamic rearrangement of the interface to expose a greater fraction of hydrophilic moieties in response to contact with water. We show that these in-air superoleophobic/superhydrophilic coatings deposited onto porous supports enable separation of model oil–water emulsions with separation efficiencies up to 99.9% with 699 L·m–2 h–1 permeate flux when the superhydrophilic/superoleophobic coatings are paired with 0.45 μm nylon membrane supports

    Uncharacterized bacterial structures revealed by electron cryotomography

    Get PDF
    Electron cryotomography (ECT) can reveal the native structure and arrangement of macromolecular complexes inside intact cells. This technique has greatly advanced our understanding of the ultrastructure of bacterial cells. We now view bacteria as structurally complex assemblies of macromolecular machines rather than as undifferentiated bags of enzymes. To date, our group has applied ECT to nearly 90 different bacterial species, collecting more than 15,000 cryotomograms. In addition to known structures, we have observed, to our knowledge, several uncharacterized features in these tomograms. Some are completely novel structures; others expand the features or species range of known structure types. Here, we present a survey of these uncharacterized bacterial structures in the hopes of accelerating their identification and study, and furthering our understanding of the structural complexity of bacterial cells

    Double Spin Asymmetry of Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s)=200 GeV

    Full text link
    We report on the first measurement of double-spin asymmetry, A_LL, of electrons from the decays of hadrons containing heavy flavor in longitudinally polarized p+p collisions at sqrt(s)=200 GeV for p_T= 0.5 to 3.0 GeV/c. The asymmetry was measured at mid-rapidity (|eta|<0.35) with the PHENIX detector at the Relativistic Heavy Ion Collider. The measured asymmetries are consistent with zero within the statistical errors. We obtained a constraint for the polarized gluon distribution in the proton of |Delta g/g(log{_10}x= -1.6^+0.5_-0.4, {mu}=m_T^c)|^2 < 0.033 (1 sigma), based on a leading-order perturbative-quantum-chromodynamics model, using the measured asymmetry.Comment: 385 authors, 17 pages, 15 figures, 5 tables. Submitted to Phys. Rev. D. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Upsilon (1S+2S+3S) production in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and cold-nuclear matter effects

    Full text link
    The three Upsilon states, Upsilon(1S+2S+3S), are measured in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and rapidities 1.2<|y|<2.2 by the PHENIX experiment at the Relativistic Heavy-Ion Collider. Cross sections for the inclusive Upsilon(1S+2S+3S) production are obtained. The inclusive yields per binary collision for d+Au collisions relative to those in p+p collisions (R_dAu) are found to be 0.62 +/- 0.26 (stat) +/- 0.13 (syst) in the gold-going direction and 0.91 +/- 0.33 (stat) +/- 0.16 (syst) in the deuteron-going direction. The measured results are compared to a nuclear-shadowing model, EPS09 [JHEP 04, 065 (2009)], combined with a final-state breakup cross section, sigma_br, and compared to lower energy p+A results. We also compare the results to the PHENIX J/psi results [Phys. Rev. Lett. 107, 142301 (2011)]. The rapidity dependence of the observed Upsilon suppression is consistent with lower energy p+A measurements.Comment: 495 authors, 11 pages, 9 figures, 5 tables. Submitted to Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Measurement of long-range angular correlation and quadrupole anisotropy of pions and (anti)protons in central dd++Au collisions at sNN\sqrt{s_{_{NN}}}=200 GeV

    Full text link
    We present azimuthal angular correlations between charged hadrons and energy deposited in calorimeter towers in central dd++Au and minimum bias pp++pp collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV. The charged hadron is measured at midrapidity η<0.35|\eta|<0.35, and the energy is measured at large rapidity (3.7<η<3.1-3.7<\eta<-3.1, Au-going direction). An enhanced near-side angular correlation across Δη>|\Delta\eta| > 2.75 is observed in dd++Au collisions. Using the event plane method applied to the Au-going energy distribution, we extract the anisotropy strength v2v_2 for inclusive charged hadrons at midrapidity up to pT=4.5p_T=4.5 GeV/cc. We also present the measurement of v2v_2 for identified π±\pi^{\pm} and (anti)protons in central dd++Au collisions, and observe a mass-ordering pattern similar to that seen in heavy ion collisions. These results are compared with viscous hydrodynamic calculations and measurements from pp++Pb at sNN=5.02\sqrt{s_{_{NN}}}=5.02 TeV. The magnitude of the mass-ordering in dd++Au is found to be smaller than that in pp++Pb collisions, which may indicate smaller radial flow in lower energy dd++Au collisions.Comment: 424 authors, 8 pages, and 4 figures. v2 is version accepted for publication in Phys. Rev. Lett. Published version will be at http://www.phenix.bnl.gov/phenix/WWW/info/pp1/161/ Plain text data tables will be at http://www.phenix.bnl.gov/papers.htm
    corecore